
 

Lessons in Spatial Sampling 
Or . . .  “Does Anybody Know the Shape of a Wavefield?” 
 
Norm Cooper - Mustagh Resources Ltd., Calgary, Canada 
 
In a homogeneous, isotropic, infinite half space (remember those regimes from Geophysics 101?) 
a propagating wavefield from a simple impulsive source will be spherical.  If we introduce 
velocity gradients or layers, the wavefield becomes elliptical.  Further perturbations of the 
subsurface create additional complexities in the shape of a wavefield.  Our job as exploration 
geophysicists is to observe those complexities when and where portions of the wavefield return to 
the earth’s surface. From these observations we attempt to infer what subsurface geologic features 
may exist that caused the irregularities.  In a realistic setting, this is a formidable task.   

 

 
Figure 1    

An example of remote sensing (from cover of “PinPressions” toy) 
(This stunt performed by an expert - DON”T  TRY  THIS  AT  HOME.) 

 

Imagine a wavefield has propagated to a reflector.  As it encounters the structures on that 
reflector, the shape of the wavefield will adopt the shape of the structures.  That shape remains 

with the wavefield as it returns to the surface where we measure it.  The wavefield at the surface 
is the net result of all distortions introduced to the wavefield during its travels in the subsurface.  

 



 

 

The topic of spatial sampling addresses the requirements for discretely sampling a wavefield in 
order to preserve sufficient information to resolve features of importance to us.  This means we 
must sample our data appropriately, not just in the common source domain, but also in the 
receiver, offset and CDP domains.   

Note in figure 2 that a 2D seismic line recorded with 20-meter group intervals does not 
necessarily result in CDP's with 20 meter sampling of offset.  Noise not properly sampled will not 
behave the way we might think.  If 2D programs present such problems, imagine the complexity 
due to irregular offset sampling in 3D programs. 

 

 
Figure 2    

A portion of a 2D stacking chart for a line with a receiver interval of 20 meters  
and a source interval of 80 meters.  The sources were located coincident with receiver points. 

 

Note that each shot record will sample receivers every 20 meters.  However,  
each receiver gather will only sample a shot every 80 meters and  

each CDP only samples recorded traces every 160 meters.  
 
Spatial resolution is integrally tied to temporal (or vertical) resolution.  Figure 3 demonstrates this 
concept.  The left column of figures represents data sampled at just 20 Hz for three different 
spatial sample intervals.  Sampling at 10 m and 20 m intervals provides adequate imaging, but the 
40 m version is aliased (note the “checkerboard” pattern and the ambiguity as to dip direction).  
The right column represents data sampled at 40 Hz for the same spatial sample intervals.  Note 
that aliasing now begins at 20 m sampling and the 40 m version is 100 percent aliased (dips now 
appear flat). 

Events that may be appropriately sampled in space for one bandwidth of data may not be 
sufficiently sampled in space for higher frequencies.  Required spatial sampling is determined by 
wavefield complexity as well as expected imaging bandwidth.  Both parameters must be carefully 
and realistically considered.   

 



 

 
Figure 3    

A simple two-dimensional wavefield sampled in time and space. 
 

Left side is 20 Hz monochromatic data while the right side is 40 Hz.   
The top figures represent 10 m trace intervals; the middle set 20 m intervals 

with 40 m trace intervals on the bottom.  
 
 

What about spatial prediction filters and interpolations?  Can we reconstruct or simulate smaller 
spatial samples by techniques such as mid-point scatter and re-binning in 3-D’s or by using FX 
Prediction filters?  The answer is definitely yes . . .  or no . . . depending on a variety of factors.  
Mother nature allows us to cheat under favorable circumstances, but penalizes us heavily if we 
are reckless about our application of such methods.   

Our final processed image quality depends on the statistical significance of our patterns of 
measurement.  Can't we just hit a zoom/sharpen button on a computer console and have our 
images instantly enhanced . . . just like they do in the movies? 

Maybe.   

 

If you don't understand the concept of aliasing, you should probably attend this tutorial.  If you 
think  you do understand it, you should definitely attend !! 
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Seismic Reflections from within the Earth
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Buried Focus Stratigraphic Model  - Tesseral
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A Seismic Shot Record from Saskatchewan
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The Same Record as a set of  Spatial Waveforms
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Nyquist Sampling Theory . . .

. . . Requires at least two samples per cycle
37

The Nyquist Theorem

S.I.  <=  P / 2

P   >=   2 x S.I. 

F  <=  1 / [ 2 x S.I. ]

FNyquist = 1 / [ 2 x S.I. ]
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38

The Nyquist Theorem - Spatially

S.I.  <=   / 2

 >=   2 x S.I. 

K  <=  1 / [ 2 x S.I. ]

KNyquist = 1 / [ 2 x S.I. ]

Spatial Sampling at the Surface

Spatial Sampling at the Surface

αSin  x  Freq  3

Velocity  2
  Interval Surface

max

average






Surface interval = 2 x CDP interval

Desire 3 samples per wavelength

Diffractions 

From  “buried focus” syncline

42

Trace Interval = 2 m  (every 4th displayed)
Time - Space Domain

43

Trace Interval = 2 m
F-K Domain

Kny = 1 / (2 x 2 m)  =  .250 cy/m
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44

Trace Interval = 10 m
Time - Space Domain

45

Trace Interval = 10 m
F-K Domain

Kny = 1 / (2 x 10 m)  =  .050 cy/m

46

Trace Interval = 10 m
F-K Domain

Kny = 1 / (2 x 10 m)  =  .050 cy/m
47

Trace Interval = 10 m
F-K Domain

Redisplayed :    stretched along K axis 
Kny  = .050 cy/m

48

Trace Interval = 20 m
Time - Space Domain

49

Trace Interval = 20 m
F-K Domain

Kny = 1 / (2 x 20 m)  =  .025 cy/m
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50

Trace Interval = 20 m
F-K Domain

Kny = 1 / (2 x 20 m)  =  .025 cy/m
51

Trace Interval = 20 m, Geophone Array over 20 m
Time - Space Domain

52

Trace Interval = 20 m , Geophone Array over 20 m 
F-K Domain

Kny = 1 / (2 x 20 m)  =  .025 cy/m
53

Trace Interval = 2 m
F-K Domain

Kny = 1 / (2 x 2 m)  =  .250 cy/m

55

Trace Interval = 2 m
F-K Domain

Kny = 1 / (2 x 2 m)  =  .250 cy/m
56

Trace Interval = 20 m
F-K Domain

Kny = 1 / (2 x 20 m)  =  .025 cy/m

20 m array
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57

Trace Interval = 20 m , Geophone Array over 20 m 
F-K Domain

Kny = 1 / (2 x 20 m)  =  .025 cy/m
62

3 Receiver lines (25 per line)

Click mouse on picture to activate movie

63

2 Source  lines (25 per line)

Click mouse on picture to activate movie 64

Full WaveField Sampling - Grid

65

Full MegaBin – 2 x 1 with ½ offset

66

Half MegaBin – 2 x 1 diagonalized
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67

Orthogonal – 4 x 3 with offset

68

Full WaveField Sampling – 1 x 1 with offset

69

Stack Array 2D - Grid

70

Sparse 2D - Grid

72

Full WaveField    (0-1500 m)  Fold = 494

73

Full MegaBin    (0-1500 m)  Fold = 240-250
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74

Half MegaBin   (0-1500 m)  Fold = 120-126

75

Orthogonal 3x4     (0-1500 m)  Fold = 38-43

76

Stack Array 2D     (0-1500 m)  Fold = 75

77

Sparse 2D x 4     (0-1500 m)  Fold = 18-19

79

Full WaveField    Offset Distribution 

80

Full MegaBin          Offset Distribution 
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81

Half MegaBin          Offset Distribution 

82

Orthogonal            Offset Distribution 

83

Stack Array 2D          Offset Distribution 

84

Sparse 2D          Offset Distribution 

86

Common Offset Stack  - before and after mute

87

Full WaveField          Simulated Data
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88

Full MegaBin                 Simulated Data

89

Half MegaBin                 Simulated Data

90

Orthogonal                 Simulated Data

91

Stack Array 2D                 Simulated Data

92

Sparse 2D x 4                Simulated Data

94

S. I. = 4 x R. I. S. I.  =   R. I.
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Smear due to a Curved Line
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Smooth curved line
Radius = 20000 m
Xmax = 4000 m

98

Offset Distribution
Radius = 20000 m
Xmax = 4000 m 99

Irregular curved line
Radius = 20000 m
Xmax = 4000 m

100

Irregular curved line
Offset Distribution
Radius = 20000 m
Xmax = 4000 m 101
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102

Trace Interval = 10 m
Time - Space Domain

103

Trace Interval = 10 m by Fourier Interpolation
Time - Space Domain

104

Trace Interval = 10 m by Fourier Interpolation
Time - Space Domain

105

Trace Interval = 10 m by Fourier Interpolation
Time - Space Domain

106

Trace Interval = 20 m
F-K Domain

Kny = 1 / (2 x 20 m)  =  .025 cy/m
107

Trace Interval = 10 m by Fourier Interpolation
F-K Domain

Kny = 1 / (2 x 10 m)  =  .050 cy/m
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108

Trace Interval = 10 m
Time - Space Domain

109

Trace Interval = 10 m by F-X Prediction Filtering
Time - Space Domain

110

Trace Interval = 20 m
F-K Domain

Kny = 1 / (2 x 20 m)  =  .025 cy/m
111

Trace Interval = 10 m by F-X Prediction Filtering 
F-K Domain

Kny = 1 / (2 x 10 m)  =  .050 cy/m

112

30 m Bins    Structure   Normal

113

30 m Bins    Structure   Interpolated
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114

30 m Bins    Migrated   Interpolated

115

30 m Bins    Migrated   Normal

116

50 m Bins    Structure   Normal

117

50 m Bins    Structure   Interpolated

118

50 m Bins    Migrated   Interpolated

119

50 m Bins    Migrated   Normal
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Conclusions

 Preserving details of reflected wavefield

 Source, Receiver and CDP sampling

 Sparse approximations

 Spatial Anti-Alias filtering

 Line or Grid regularity

 Interpolation (cheating Mother Nature)
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