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Overview 
 
Many geophysicists are of the opinion that seismic acquisition consists of standard procedures and practices that have been well established 
and agreed on in the past.  Therefore, apart from a little management to interface with government regulators and surface land owners, very 
little effort need be spent in organizing the field operation. 

In fact, both the tools and techniques for acquisition have evolved very rapidly over the past ten years.  Our understanding of the physical 
processes of acquisition continues to expand.  If we do not pay proper attention to the subtleties of acquisition design and implementation, we 
run many risks:  obtaining data that images our objectives poorly;  data of sub-standard quality in both bandwidth and signal to noise ratio; 
operations that violate current environmental standards;  and costs that run out of control.   

This presentation will be a short overview of the many aspects of seismic acquistion with hi-lites on equipment or concepts that have changed 
the face of acquisition.   

 

Recording Instruments 
 
Perhaps one of the most misunderstood changes in the field has been the evolution and adoption of large channel distributed recording 
systems implementing Delta-Sigma technology.  The significance of these systems is that reduced power consumption and nodal network-
based digital telemetry has opened the door wide for recording more channels with enhanced spatial sampling.  Increased instantaneous 
dynamic range has replaced the previous two-stage combination of instantaneous and time variable dynamic range.  This has led some 
geophysicists to expect increased bandwidth that, in fact, is seldom realizable.  There is also a strong belief that one millisecond recording 
should become more of a standard.  The fact is, more frequent output samples reduces oversampling in the Delta-Sigma modulator and 
reduces dynamic range of the system.  Furthermore, unnecessary one millisecond sampling results in unnecessary loading of the distributed 
network system, leading to more cable failures and more costly acquisition. 

An encouraging development in recent years has been the “Vector Seis” digital sensor.  This remains in a testing and development stage, but 
has now become incorporated in a few production systems and is showing encouraging results.  A note of caution is that dynamic range 
limitations of current processing may inhibit our ability to fairly judge this new technology. 

 

Dynamite Charge Sizes and Depths 
 
As our understanding of the near-source inelastic behaviour of dynamite has been increasing, our use of this energy source has also been 
evolving.  We are recognizing more the importance of matching the charge size and its inelastic radius to the expected inhomogeneity of the 
near surface.  Large 3D programs with many thousands of shots are encouraging us to minimize charge depth as much as possible.  A good 
understanding of the near surface materials is necessary to exercise good judgement in this respect. 

 

Current Vibroseis Philosophies 
 
More people are becoming alert to the fact that a vibrator is an imperfect machine devoted to generating a signal that matches a desired input 
waveform as closely as possible.  Taking account of the imperfect nature of this machine leads us to a better appreciation of the behaviour 
resulting from various vibrator parameters.  The result is that more geophysicists are tending toward a few number of long sweeps in order to 
reduce sweep rates.  Low frequency emphasis is often used to meet the requirements of imaging multiple target zones at diverse depths.  We 
are focusing more on the types of noise we must deal with in seismic data.  In particular, we recognize that random, time-variant noise is 
generally our least problem while we are recognizing more forms of source-generated, offset-variant noise in both coherent and scattered 
forms.  The repeatability of this noise within the source group reduces the benefit of a large number of vertical stacks.  Non-linear sweeps must 
be considered not only with regard to their potential to compensate for earth absorption, but must also be carefully scrutinized for their impact 
on distortion artifacts.  Over many years of experience, we are coming to realize that Vibroseis is a very “non-intuitive” energy source. 

 

Fold, Offset and Other “Quality Indicators” 
 
For reasons similar to those identified in the previous paragraph (the offset-consistent nature of most noise), we are recognizing that Fold, in 
and of itself, is a poor measure of data quality.  Offset distribution within the contributing components of each stacked trace and offset 
homogeneity from one stacked trace to the next have become our most noble objectives in designing and implementing seismic programs.   In 
some 3D programs, azimuth distribution is also recognized as in important quality with regards to lateral anisotropic effects.   
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At the program design stage, the relevance of these measures is now being evaluated through the use of data simulations.  Existing data from 
the prospect area can be used to simulate the impact of geometric artifacts on the quality and mappability of stacked data.  The pursuit of 
stacking stability has lead to many varied 3D design styles.  The significance of many of these model geometries and their robustness under 
normal perturbation in implementation remains a topic of ongoing investigation. 

 
Bent Lines, Gaps and Field Methods 
 
The need for minimizing geometric artifacts in both 2D and 3D has resulted in the realization that a certain amount of irregularity in field 
designs may be desirable.  Revised 2D bent-line guidelines allow a wandering trail over a narrow corridor provided the corridor itself maintains 
a radius greater than an easily calculated value.  This freedom to allow a line to wander somewhat grants us the freedom to produce more 
irregular seismic trails.  Studies in “Pseudo-Random” 3D programs have lead to a similar phenomenon in the world of 3D acquisition.   

LIS (Low Impact Seismic) has been evolving for many years.  Hand cutting has been complemented by Mulchers, small cats with 
maneuverable blades, calibrated inertial navigation systems, helicopter supported survey and recording techniques, and many inovative 
operational techniques.  The result is that a geophysicist can now stand proudly in the aftermath of a high-density seismic program … knowing 
that the environmental and cultural impact of his operation has been minimized.   

Gaps in coverage used to cause concern solely from the perspective of weakened fold.  Now we recognize that the effect of a source or 
receiver gap results in perturbed offset distributions over an area equal to one half our useable offset.  In these days of subtle character 
interpretation and rock property attribute extractions, such perturbations can mislead the interpreter dangerously.  Many tools and techniques 
are now being developed to infill missing data areas.  Sources such as airguns (for water bodies and transition zones);  mini-vibrators and low 
energy impulsive sources (for highly cultured areas); and small machine or hand-portable drills (for those hard-to-reach areas)  are now 
forming a frequent companion to our more conventional sources.  It is imperative that we continue to develop low-impact and environmentally 
friendly methods.   

 
Summary 
 
Seismic data is being used for more and more detailed interpretation.  At the same time, the maturity of exploration in Canada means that our 
prospect areas are tending toward the more awkward areas that we previously bypassed.  The growing demand for more spatial sampling and 
more continuous coverage demands continuous evolution in all aspects of geophysics.  Seismic acquisition represents the first step in this 
process and as such remains a critical link in the chain of data quality.  We are evolving new tools that represent potential improvements in 
methodology, quality and economics.  We are operating in an environment where regulating authorities and cultural/environmental concerns 
present intimidating boundaries.  It is imperative that we become familiar with these new tools and recognize both their strengths and 
limitations.  Sometimes we must give up old habits in order to reap the benefits of new methods.   

It is too easy in this time of specialization to neglect our broader learning as geophysicists.   We must all be aware of the tools of our trade and 
not succumb to the fate of the old Swedish logger.  You may remember the story of the hardworking wood-cutter who disappeared into the 
forest each day with a large, sharp hand saw.  He would return each night having cut and stacked 1.5 cords of wood.  One day, a young 
salesman introduced the old Swede to a new tool, the chain saw.  He assured the woodsman that he would triple or quadruple his output with 
this great new invention.  After three days of exceedingly hard work, the exhausted worker returned the saw to the salesman.  “I’ve tried my 
hardest …” he said, “… but I can’t get more than a cord a day with this contraption.  I’m afraid it just doesn’t work as well as you claimed!” 

The young man looked puzzled and took the saw.  “There must be something not adjusted correctly “ he stated.  “Let me try it out.”  And he 
started the gas engine with no difficulty.  The surprised Swede jumped back and shouted “What’s all that noise?” 

Given an ever changing set of tools, we must be sure we understand their power as well as how and when to apply them.  Without this 
understanding, we will be disappointed and overworked, indeed. 



1

1

Update of  Land
Seismic Acquisition Tools 

and Techniques

Norm Cooper 
and Yajaira Herrera    

5

Acquisition Tools …

Instruments

Receivers and Sensors

Sources

6

… and Techniques

Stack Array 

Sweep Design

Field Methods

Design Implications

7

Basics of Seismic Operations

8

Recording 
Systems

9

Basic Structure of  IFP  Instruments

Lots of 
Analogue 

Electronics



2

10

Distributed Telemetry Systems
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Absorption and Spherical Divergence
Attenuation vs Frequency
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Time Variable Gain System
Attenuation vs Bandwidth
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Instantaneous Dynamic Range
Attenuation vs Bandwidth  After IFP Gain
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Typical Vibrator Mounted on a Buggy Carrier
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Vibrator Control Signals
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Sweep Rate controls S/N and Vibrator Performance
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Superposition – Vertical Stacking
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Stacked Data with Gap
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Typical Seismic Trail from Past Years

8 m width
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Modern Mulcher Operation
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No Soil Disturbance        No Slash Pile
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Enviro – Drills
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Patch Size,
Model Type 

and Pre-Stack
Statistical Diversity
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Crossplot of Largest Offset Gap Size vs Position
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Crossplot of Largest Offset Gap Size vs Position
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Crossplot of Largest Offset Gap Size vs Position
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Crossplot of Largest Offset Gap Size vs Position
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Data 
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Dale Johnson
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MUSTAGH RESOURCES LTD. 
If you desire more information or would 

like a copy of this tutorial, please 
contact Norm Cooper or Yajaira Herrera

phone  (403) 265-5255

fax (403) 265-7921

modem (403) 264-5165 (ProComm Plus)

e:mail   ncooper@mustagh.com

web page   http://www.mustagh.com

89

MUSTAGH RESOURCES LTD. 

Or write us at:

400, 604 - 1st Street SW

Calgary, Alberta, Canada

T2P 1M7


