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Norm Cooper

 Graduated from UBC in 1977

 BSc with a major in Geophysics

 Amoco Canada 1977 to 1981

 Voyager  Petroleums  Ltd. 

1981 to 1983

 Mustagh Resources Ltd. 

Founded in 1983
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 Graduated from University of Zulia, 

Venezuela in 1994

 BSc in Industrial Engineering

 PDVSA 1992-1994

 Lubvenca 1994-1995

 MSc in Mechanical Engineering 

from U of C in 1999

 MSc in Geophysics from U of C in 2006

 Mustagh  1998 to present

Yajaira Herrera
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Design and Management of 
2D and 3D seismic programs.

Quality Assurance and 
Parameter Optimization 
on program start ups.

Mustagh Resources Ltd. 

Since 1983 we have specialized in all 
types of Geophysical Consulting:
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Application of Seismic Methods,

Land  Seismic  Acquisition, 

Array Theory,     Instrumentation

3D design, Vibroseis Theory,

and    Basic Processing

Mustagh Resources Ltd. 

We provide training programs in:
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We design and implement

100 - 200  programs each year.  

We visit about 20 seismic crews per year.

Mustagh Resources Ltd. 

We have worked extensively 
throughout onshore Canadian basins.



11

Mustagh
Resources Ltd. 

We have worked in 
over 40 countries 

across 6 continents

Canada, USA, Mexico, Guatemala, Nicaragua, Trinidad,

Argentina, Brazil, Bolivia, Venezuela, Colombia, Ecuador, Peru, 

England, North Ireland, Poland, Romania, France, Germany

Algeria, Tunisia, Libya, Egypt, Sudan, Chad, Mozambique, 

Somalia

Russia, Iran, Oman, Yemen, Qatar, Syria, Jordan, Iraq, UAE, 

Malaysia, Japan, New Zealand, Australia, Pakistan, India 
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- more than 40  3-D designs in Colombia
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Basics of Seismic Operations

Three Elements of Seismic
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3-D Seismic 
Diffractions and 

Out-of-Plane Resolution
A Case History From

The Vauxhall Area, Alberta

Jim Bruce (Rozsa Petroleums)
Norm Cooper (Mustagh Resources)
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Western Canada Today



19

Jurassic:    Sawtooth and Shaunovon Distribution
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Carboniferous / Mississippian  - Carbonate deposition
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Carboniferous / Mississippian  - start of Karstification
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Paleo Unconformity  - Karstification
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Jurassic Sawtooth  - infilling of lows
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Jurassic Sawtooth  - infilling of lows
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Jurassic Sawtooth  - infilling of lows
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Jurassic Sawtooth  - infilling of lows
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Cretaceous Deposition – differential compaction of Sawtooth
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Cretaceous Oil Migration and partial filling of highs
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Cretaceous Oil Migration and partial filling of highs
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Cretaceous Oil Migration and partial filling of highs
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2-D Seismic can be confused 
by “Out-of-Plane” effects
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Summary of Design Objectives

Clear Images
– broad bandwidth temporal and lateral

Accurate in Depth and Space
– 3-D migration, velocities, spatial sampling

Efficient and Cost-Effective
- available recording equipment, regulations, topography and culture

Robust under Perturbation
- variations in geologic model, topography, culture

44

OmanPeru Georgia

Nicaragua
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Design versus Modeling
Analyze exploration objectives

Study Geological attributes 

Review existing data and study Signal and 
Noise attributes

Incorporate operational limitations

Determine appropriate basic model 
parameters

The designer will also recommend source 
types, receiver types, array 
configurations, etc.

The designer will generally establish basic 
skid and offset guidelines.

Program “Design” requires in-depth 
knowledge and experience in geology, 
geophysics, and seismic field 
operations.

Use parameters of the designer

Fit them to known cultural, topographic, 
environmental and regulatory 
restrictions using background air 
photos, DEMs, satellite images and 
other information maps

Perturb the model and analyze the impact 
using various statistics (hopefully not 
just fold!)

Modeling is also used as part of the quality 
control process when additional 
changes are required during program 
implementation

The role of “Modeling” contains some 
professional skills, but may be suited 
to a more technical level
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Design versus Modeling
The inputs to the “Design” phase 

are project objectives, 
geological models, geographic 
information and available 
equipment.

The tools used are calculators 
(often Excel spreadsheets), 
fundamental calculations and 
application of extensive 
experience.

The output is a parameter sheet 
and perhaps a basic model on 
geographic maps. 

The inputs to “Modeling” are 
parameters, perhaps a basic 
model.

The tools used are modeling 
software such as DirectAid, 
Omni, Mesa or various in-
house programs.

The outputs are statistical 
analyses such as fold, offset 
homogeneity, offset-azimuth 
polar plots, migration imaging 
plots.
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Geologica
l

Geophysical

Signal and 

Noise
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Design Inputs - Geological
Structure Maps

Stratigraphic Information

Velocities

Depths

Dips (geological and diffractions)

Complexity

Existing seismic interpretations, geologic 
mapping, 

residual gravity maps, 
magnetic and EM surveys

50

Design Inputs - Geological
Structure Maps

Stratigraphic Information

Velocities

Depths

Dips (geological and diffractions)

Complexity

Geologic models,

Stratigraphic Charts,

Communication with Client
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Design Inputs - Geological
Structure Maps

Stratigraphic Information

Velocities

Depths

Dips (geological and diffractions)

Complexity

Well logs (LAS), VSPs,
Synthetic Seismograms

Seismic Processor Velocity Functions
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Design Inputs - Geological
Structure Maps

Stratigraphic Information

Velocities

Depths and TWT

Dips (geological and diffractions)

Complexity

Well logs, VSPs, 
Existing seismic interpretations
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Design Inputs - Geological
Structure Maps

Stratigraphic Information

Velocities

Depths

Dips (geological and diffractions)

Complexity

Geologic Cross-Sections,
un-migrated seismic sections

Calculations and models
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Design Inputs - Geological
Structure Maps

Stratigraphic Information

Velocities

Depths

Dips (geological and diffractions)

Complexity

Geologic Cross-Sections,
Existing seismic interpretations
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Fold and Geophysical Objectives

Simple Structure                      > 8-10 

Complex Structure ??                 > 20

AVO (2D) > 20

AVO (3D) > 40

AI  (acoustic impedance) inversions > 50

AVA / AVO > 80
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A Typical Shot Record
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A very good Shot Record
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Poorer Quality Shot Record
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Types of Noise

Noise   is 

RANDOM

??

60 50



61 12

Trapped Mode Reverberations



Tuned Guided Waves and Harmonics
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Model with no LVL
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Shot record with no LVL
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Model with  LVL inhomogeneity
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Shot record with Scattered Surface Waves

Scattered
Surface
Waves

68

good quality 
reflections
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Many scattering points, 
Much short-wavelength, 

chaotic noise
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Clean Record - Tilley Area

Group Interval
= 20 m

Far Offset 
= 1200 m

<-Glauconite
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Noisy Record - Guided Wave

Just 136 m

away from

previous 

record
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Types of Noise

 Time variant 

 Offset variant (Source-generated)

 Source variant

 Receiver variant

 Azimuth variant

Noise   =   f (t,x,s,r, )
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Types of Noise
 Time variant 

 Offset variant (Source-generated)

 Source variant

 Receiver variant

 Azimuth variant

Noise   =   f (t,  X ,s,r,   )
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Ray Tracing Wave
Equation

“illumination”
Studies
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Ray Traced Model – in X-Z Space
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Ray Traced Model – in X-T Space
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Ray Traced Model - 237 ms
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Ray Traced Model - 237 ms
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Mid Point  vs  Reflecting Point 
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81Input Model for Tesseral Wave Equation Modeling

82Snapshot of Wavefield 0.732 seconds after shot



83Snapshot of Wavefield 1.452 seconds after shot

84Snapshot of Wavefield 1.916 seconds after shot



85Modeled Shot Record with 5-meter trace 
i t l
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Shortest emergent 
wavelengths are 
about 180 meters 

for 20 Hz 

For other 
frequencies they 
would be about 

3600 / F 

(ie 60 m for 60 Hz)
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Receiver
Interval

Source
Interval

Mid-Point
Scatter ?

Bin Size

Line
Spacings

94

Receiver and Source
Intervals

Ri   & Si



Spatial Sampling at the Surface

Working backwards from 
anticipated Stacked Data …

αSin  x  Freq  b

Velocity        a
  Interval Surface







Working backwards from 
anticipated Stacked Data …

αSin  x  Freq  b

Velocity        a
  Interval Surface





a  =  1 for  sub-surface bin size

a  =  2 for     surface      bin size

Working backwards from 
anticipated Stacked Data …

αSin  x  Freq  b

Velocity        a
  Interval Surface





Use:

Stacking for NMO-consistent result

RMS if deriving from well-log intervals

Average for slightly conservative results

Do NOT use Interval Velocities !



Working backwards from 
anticipated Stacked Data …

αSin  x  Freq  b

Velocity        a
  Interval Surface





Migrated or Geologic dips
for migration output trace spacing
(NOT necessarily “natural” bin size)

Unmigrated dips (max 45o) for surface intervals

30o for stratigraphic plays in gently dipping geology
in order to properly measure diffraction limbs 
from lateral velocity changes

Working backwards from 
anticipated Stacked Data …

αSin  x  Freq  b

Velocity        a
  Interval Surface





Using  Fdominant will only provide correct 
sampling of data before deconvolution

We should use  Fmax in order to protect all 
recoverable frequencies through 
deconvolution and migration



αSin  x  Freq  b

Velocity        a
  Interval Surface





Working backwards from 
anticipated Stacked Data …

αSin  x  Freq  b

Velocity        a
  Interval Surface





b  =  4 for basic Nyquist and
plane wave theory (two-way time)

b  =  2 for basic Nyquist and
estimate of curved-ray theory

b  =  3 for over-sampling Nyquist and
estimate of curved-ray theory

migrateddominant

stacking

αSin    x  Freq  4

Velocity        1
    IntervalBin       






Many variations for Ri or Si …

migrateddominant

stacking

αSin    x  Freq  4

Velocity        2
    Interval Surface






migrateddominant

RMS

αSin    x  Freq  4

Velocity        2
    Interval Surface





migrateddominant

average

αSin    x  Freq  4

Velocity        2
    Interval Surface






unmigrateddominant

average

αSin  x  Freq  4

Velocity        2
    Interval Surface






)(30Sin  x  Freq  4

Velocity        2
    Interval Surface

o
dominant

average






)(30Sin  x  Freq  4

Velocity        2
    Interval Surface

o
maximum

average






)(30Sin  x  Freq  3

Velocity        2
    Interval Surface

o
maximum

average








Many variations for Ri or Si …

)(30Sin  x  Freq  3

Velocity        2
    Interval Surface

o
maximum

average






maximum

average

Freq

Velocity
    Interval Surface 

From sampling of 
emerging 
apparent 
wavelengths

50

Depth
    Interval Surface 

From Frequency 
limits after 
100 cycles of 
absorption

104
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“Wavefield”

106

Measuring the Emerging Wavefield
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Measuring the Emerging Wavefield

108

“Apparent” Wavelength at the surface

Angle of emergence  (α)

True Wavelength  (λ)

Apparent Wavelength     λapp = λ / Sin(α)
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Measuring the “Apparent” Wavelength at the 
surface

Angle of emergence  (α)

True Wavelength  (λ)

Apparent Wavelength     λapp = λ / Sin(α)

If α = 30 degrees, 
then

λapp = λ / Sin(α)

λapp = V / (F Sin(α))

λapp = 2 V / F

- and perhaps Receiver interval = λapp / 2 = V / F

110

Continuously measured wavefield



Many variations for Ri or Si …

)(30Sin  x  Freq  3

Velocity        2
    Interval Surface

o
maximum

average






maximum

average

Freq

Velocity
    Interval Surface 

From sampling of 
emerging 
apparent 
wavelengths

50

Depth
    Interval Surface 

From Frequency 
limits after 
100 cycles of 
absorption

112

Bin Size

Ri / 2   X Si / 2



Many variations for Ri or Si …

2
Si

2
Ri    SizeBin  Surface-Sub Natural 

BUT …

Trace spacing of 
final Migrated data volume 

does not necessarily have to be 
natural bins !!

114

Jump to slide 152 
To skip bin size

Then use Midpoint scatter 
seminar to talk about this



Use DA20 to show 
offset orthogonal versus triple staggered

with and without perturbation
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Trace out the mid-points illuminated by a 
single source recorded by a Patch of receivers

“Columns” of bins are imaged - one column for 
each receiver line (each half the length)
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Shot 2 in normal position

Detail of Model Before Migration



One Trace Migrated

Trace  650

One Trace Migrated

Trace  650



Three Traces Migrated

Trace  646 to 654  (ever 4th)

Five Traces Migrated

Trace  642 to 658  (ever 4th)



Seven Traces Migrated

Trace  638 to 662  (ever 4th)

Nine Traces Migrated

Trace  634 to 666  (ever 4th)



Eleven Traces Migrated

Trace  630 to 670  (ever 4th)

Thirteen Traces Migrated

Trace  626 to 674  (ever 4th)



Fifteen Traces Migrated

Trace  622 to 678  (ever 4th)

Seventeen Traces Migrated

Trace  618 to 682  (ever 4th)



Nineteen Traces Migrated

Trace  614 to 686  (ever 4th)

Twentyone Traces Migrated

Trace  610 to 690  (ever 4th)



Twentythree Traces Migrated

Trace  606 to 694  (ever 4th)

Twentyfive Traces Migrated

Trace  602 to 698  (ever 4th)



Twentyseven Traces Migrated

Trace  598 to 702  (ever 4th)

Twentynine Traces Migrated

Trace  594 to 706  (ever 4th)



Thirtyone Traces Migrated

Trace  590 to 710  (ever 4th)

Detail of Model After Migration



Detail of Model Before Migration

138
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140

Δx  Freq2
1

apparent

Dip Δx 2
1

Δx2
1

apparent

Dip  Freq2
1

Freq2

V

Dip

 Freq

Dip  Freq

Δx

Δx

apparent

apparent

apparent




















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Planned Mid-point scatter has several advantages …

… it facilitates better spatial sampling of the 
pre-stack migration operator



Use DA20 to show 
migration circle with and without

midpoint scatter

144

How Small can we see??
… What is the smallest Bin Size needed?

Vertical Resolution

= λ/4

=   V   .
4 x F

Lateral Resolution

= λ/2

=   V   .
2 x F

F ?
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Energy Loss Mechanisms

 Reflection Coefficients and Transmission Losses

 Mode Conversion and Energy Partition

 Spherical Divergence

 Absorption

f)(t
0t)(f, CAA   bte
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Fmax vs Absorption and Spherical Divergence

Attenuation vs Frequency
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  Absorption Coefficient          = .95 per cycle
  Low Cut Roll Off                   = 12 dB/octave
  Spherical Divergence           = -0.8

Log – Linear Plot

Dynamic Range Limit of 
Modern Instruments
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Fmax vs Absorption and Spherical Divergence

Attenuation vs Frequency
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Noise Floor?

Practical Limit of
Deconvolution ?

0.36 dB/Hz

0.675 dB/Hz

1.125 dB/Hz
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0.8 dB/Hz

Noise Floor

Example from Colombia

Higher Noise Floor
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Reef platform

“Atoll” Reef

150

Pre-Stack Time Migration, 40 m bin size

New
Location

On Reef

Off Reef
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New
Location

On Reef

Off Reef

Pre-Stack Time Migration, 15 m bin size

152

Receiver and Source
line spacings

RL   & SL
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Sparse Approximation

4 x 6 sparcity
M

N
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Surface Source Bin

SL

si

156

Calculation  of  3-D  Fold

The rectangular fold will be: 

 And the offset limited (circular) fold will be : 

Spacing LineReceiver   Spacing Line Source  4
AreaPatch  Surface



RL  SL  4
Xmax π 2



Assuming a patch encompassing all useable offsets



Normal Move Out and Offset
100m NearMidFar

After NMO Compensation
NearMidFar



After Mute
NearMidFar

160

How Sparse can we go??
… Line Spacing

      RL  SL  Fold Desired  4
Offset      2 

Max


 

Avoid: SL / RL  =  1.0

SL / RL  >  3/2

SL / RL  <  2/3
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… but really, we mean:

      RL SL    Si  Ri Fold Desired  4
Offset    π   2  

Max




Avoid: SL / RL  =  1.0

SL / RL  >  3/2

SL / RL  <  2/3
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Parameters versus Noise

      Interval Source    Ri Fold Desired
Offset         

max

      RL  SL    Si  Ri  Fold Desired  4
Offset π   2      

max



NOISE

Noise Costs
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Flared Grids

164

Good



165

Fair

166

Poor
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Good

Fair

Poor

168

Full Wave Equation

Kuh-E-Mond model using Tesseral Software
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“Flared” Grid Designs

Use DA20 to show 
Flared Grid program and statistics
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Patch Analysis

Use DA10 to demonstrate patch analysis 
and BOLEOL on As Built survey

172

3-D

Design for

Trace Density and

Statistical Diversity
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But Also :

Minimize Costs

Optimize Operational Efficiency

Minimize Environmental Impact

174

Image 
Quality

Economics
Environment

Timing

3-D Seismic Design on Land
- a juggling act



175

MUSTAGH RESOURCES LTD. 
If you desire more information or would 

like a copy of this tutorial, please 
contact Norm Cooper or Yajaira Herrera

phone  (403) 609-3866

fax (403) 609-3877

e:mail   ncooper@mustagh.com

or         yajaira@mustagh.com

web page   http://www.mustagh.com
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MUSTAGH RESOURCES LTD. 

Or write us at:

134 Hubman Landing

Canmore, Alberta

T1W 3L3

Canada
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and Polar Offset-Azimuth

184
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and Polar Offset-Azimuth

186

and Polar Offset-Azimuth
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SL = 360 RL = 240

Si = 60 Ri = 60

N = 6 M = 1

N x RL - Si/2 M x SL - Ri/2

dx dy dist azimuth

Normal pt 1410 330 1448.1 13.2
1/2 stn N 1410 315 1444.8 12.6
1/2 stn S 1410 345 1451.6 13.7

188

and Polar Offset-Azimuth
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and Polar Offset-Azimuth

190

and Polar Offset-Azimuth
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and Polar Offset-Azimuth
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Basic diagonal grid 6 x 8 sparcity, 14 x 160 patch.    
Detail for each bin showing fold in color and polar plot of offsets vs azimuths 

(equivalent to “spider” plot – just the “feet”)

Offsets 0-8000 ft included
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Detail from previous plot (detail are shown in green box)

Polar plot where center of circle (+ sign) is zero offset
and distance along any radial increases to outer edge of circle (8000 ft)
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Detail from previous plot (detail are shown in green box)

The apparent horizontal alignments of statistics are due to receiver line grid

Cross-line separation between horizontal blue lines 
equates to two times receiver line spacing 

and two adjacent bins reflect all 14 lines of one active patch
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Detail from previous plot (detail are shown in green box)

The apparent diagonal alignments of statistics are due to source line grid

Cross-line separation between diagonal pink lines 
equates to two times source line spacing
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Offsets and azimuths in highlighted area are limited by 14 line patch.  
A 16 line patch would have added more fold and more statistics in this area.

However, this is only useful for offsets extending to 8000 meters.
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With this insight, it is easy to see that reducing receiver line spacing 
will bring the offset-azimuth statistics in closer proximity to each other 

and will provide better statistical sampling of source generated noise modes 
and of pre-stack migration operators.  

BUT – if long offsets are important, sufficient lines must be recorded 
in order to preserve total cross-line aperture

198S. I. = 4 x R. I. S. I.  =   R. I.

Geometric Noise – remember 
importance of statistical diversity !!

4 vibs x 4 swps x 1000 / 80

= 200 vib-swps/km

1 vib x 2 swps x 1000 / 20

= 100 vib-swps/km
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“Wavefield”

200

Continuously measured wavefield
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10 m trace spacing 100 m trace spacing

… discretely measured with geophone groups
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Recommendations – 2D

Ensure Source Interval is less than or equal to 

maximum useable offset divided by desired fold

Where affordable, allow source interval to more 

closely approach receiver interval

A geophone array should be used distributed over 

the receiver interval

There is little value in recording receiver intervals 

smaller than two times the desired CDP interval



203

Recommendations – 3D

Ensure source and receiver line spacings are sufficiently 

small to deliver the desired fold within the maximum 

useable offsets

Where affordable, allow grid density tighter than the 

minimum predicted necessary density

A combination of midpoint scatter and arrays of about 1/3 of 

the source or receiver interval should be considered

There is little value in recording receiver intervals smaller 

than two times the desired subsurface bin size


